Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Local fields in the electrodynamics of mesoscopic media

Identifieur interne : 001C18 ( Main/Exploration ); précédent : 001C17; suivant : 001C19

Local fields in the electrodynamics of mesoscopic media

Auteurs : Ole Keller [Danemark]

Source :

RBID : ISTEX:F9E7E71FD0D202C449936407A16EF5B38F8817D0

English descriptors

Abstract

Abstract: To understand the electrodynamics of mesoscopic media it is in general necessary to take into account local-field effects. This article presents a review of the role played by local fields in the high-frequency electrodynamics of systems exhibiting essential quantum confinement of the electron motion. In Part A, the fundamental local-field theory is described. By combining an electromagnetic propagator formalism with a microscopic linear and nonlocal response theory the basic loop equation for the local field is established and some of its implications studied. Various kinds of local-field calculations are presented and the underlying physical interpretations discussed. In Part B, the basic theory is used to study the linear local-field electrodynamics of a few, but representative and varied, mesoscopic systems. Special emphasis is devoted to investigations of the local-field phenomena in quantum wells and small particles (quantum dots), and to studies of optical near-field electrodynamics and surface dressing of charged wave packets in motion. In Part C, important features of the nonlinear local-field electrodynamics of mesoscopic media are described on the basis of selected examples. Thus, a description of optical second-harmonic generation in quantum wells is followed by a discussion of the photon-drag effect in one- and two-level quantum wells, and in mesoscopic metallic and semiconducting rings. Finally, a local-field study of the optical phase conjugation of the field radiated by a mesoscopic particle is undertaken, and a new route leading to confinement of electromagnetic fields into the so-called quantum dots of light is presented.

Url:
DOI: 10.1016/0370-1573(95)00059-3


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Local fields in the electrodynamics of mesoscopic media</title>
<author>
<name sortKey="Keller, Ole" sort="Keller, Ole" uniqKey="Keller O" first="Ole" last="Keller">Ole Keller</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F9E7E71FD0D202C449936407A16EF5B38F8817D0</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1016/0370-1573(95)00059-3</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-T9XDMW6J-Z/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001894</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001894</idno>
<idno type="wicri:Area/Istex/Curation">001894</idno>
<idno type="wicri:Area/Istex/Checkpoint">000997</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000997</idno>
<idno type="wicri:doubleKey">0370-1573:1996:Keller O:local:fields:in</idno>
<idno type="wicri:Area/Main/Merge">001C86</idno>
<idno type="wicri:Area/Main/Curation">001C18</idno>
<idno type="wicri:Area/Main/Exploration">001C18</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Local fields in the electrodynamics of mesoscopic media</title>
<author>
<name sortKey="Keller, Ole" sort="Keller, Ole" uniqKey="Keller O" first="Ole" last="Keller">Ole Keller</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Institute of Physics, Aalborg University, Pontoppidanstrœde 103, DK-9220 Aalborg Øst</wicri:regionArea>
<orgName type="university">Université d'Aalborg</orgName>
<placeName>
<settlement type="city">Aalborg</settlement>
<region nuts="2" type="region">Jutland du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Physics Reports</title>
<title level="j" type="abbrev">PLREP</title>
<idno type="ISSN">0370-1573</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1996">1996</date>
<biblScope unit="volume">268</biblScope>
<biblScope unit="issue">2–3</biblScope>
<biblScope unit="page" from="85">85</biblScope>
<biblScope unit="page" to="262">262</biblScope>
</imprint>
<idno type="ISSN">0370-1573</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0370-1573</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Abbreviation</term>
<term>Agarwal</term>
<term>Amer</term>
<term>Angular spectrum</term>
<term>Appl</term>
<term>Approximation</term>
<term>Background field</term>
<term>Basic integral equation</term>
<term>Bozhevolnyi</term>
<term>Classical diffraction theory</term>
<term>Coefficient</term>
<term>Commun</term>
<term>Commutator</term>
<term>Conductivity</term>
<term>Conductivity tensor</term>
<term>Configurational</term>
<term>Configurational resonances</term>
<term>Conjugation</term>
<term>Conjugator</term>
<term>Constitutive</term>
<term>Constitutive equation</term>
<term>Constitutive relation</term>
<term>Coulomb</term>
<term>Coulomb gauge</term>
<term>Courjon</term>
<term>Current densities</term>
<term>Current density</term>
<term>Diamagnetic</term>
<term>Diamagnetic effect</term>
<term>Diamagnetic polarizability</term>
<term>Diamagnetic response</term>
<term>Dielectric</term>
<term>Different photon energies</term>
<term>Different relaxation times</term>
<term>Direct integration</term>
<term>Direct part</term>
<term>Dispersion relation</term>
<term>Doping</term>
<term>Dyadic</term>
<term>Dynamics</term>
<term>Eigenstates</term>
<term>Eigenvalue</term>
<term>Electric displacement field</term>
<term>Electric field</term>
<term>Electrodynamic</term>
<term>Electrodynamics</term>
<term>Electromagnetic</term>
<term>Electromagnetic field</term>
<term>Electromagnetic propagator</term>
<term>Electromagnetic vacuum propagator</term>
<term>Electromagnetic waves</term>
<term>Electron density</term>
<term>Electron system</term>
<term>Electron wave packet</term>
<term>Electronic transition frequency</term>
<term>Energy eigenstates</term>
<term>Energy reflection coefficient</term>
<term>Equivalently</term>
<term>Evanescent</term>
<term>Evanescent waves</term>
<term>Excitation</term>
<term>Experimental data</term>
<term>Explicit expression</term>
<term>Explicit expressions</term>
<term>External conductivity</term>
<term>External field</term>
<term>Extinction theorem</term>
<term>Feibelman</term>
<term>Feibelman approach</term>
<term>Fermi</term>
<term>Field optics</term>
<term>Film plane</term>
<term>Formalism</term>
<term>Fourier</term>
<term>Frequency range</term>
<term>Fundamental field</term>
<term>Fundamental frequency</term>
<term>Fundamental theory</term>
<term>Gaas</term>
<term>Gaas quantum</term>
<term>Gauge invariance</term>
<term>Gimzewski</term>
<term>Ground state</term>
<term>Hamiltonian</term>
<term>Heuristic</term>
<term>Homogeneous part</term>
<term>Imaginary part</term>
<term>Imaginary parts</term>
<term>Incident field</term>
<term>Inhomogeneous</term>
<term>Integral</term>
<term>Integral equation</term>
<term>Integral equations</term>
<term>Integral relation</term>
<term>Interaction hamiltonian</term>
<term>Internal dynamics</term>
<term>Intersubband</term>
<term>Intersubband transition</term>
<term>Invariance</term>
<term>Ipoo</term>
<term>Jellium</term>
<term>Jump conditions</term>
<term>Keller</term>
<term>Keller ph_vsics reports</term>
<term>Keller physics reports</term>
<term>Keller reports</term>
<term>Lamb shift</term>
<term>Last term</term>
<term>Lett</term>
<term>Linear electrodynamics</term>
<term>Linear response theory</term>
<term>Local field</term>
<term>Local fields</term>
<term>Localized</term>
<term>Longitudinal</term>
<term>Longitudinal electrodynamics</term>
<term>Longitudinal field</term>
<term>Longitudinal part</term>
<term>Longitudinal parts</term>
<term>Lorentz</term>
<term>Macroscopic</term>
<term>Macroscopic electrodynamics</term>
<term>Macroscopic medium</term>
<term>Macroscopic system</term>
<term>Macrosystem</term>
<term>Many cases</term>
<term>Matrix</term>
<term>Mesoscopic</term>
<term>Mesoscopic media</term>
<term>Mesoscopic medium</term>
<term>Mesoscopic object</term>
<term>Mesoscopic objects</term>
<term>Mesoscopic particle</term>
<term>Mesoscopic particles</term>
<term>Mesoscopic system</term>
<term>Mesoscopic systems</term>
<term>Metallic quantum</term>
<term>Metallic quantum wells</term>
<term>Mobile electrons</term>
<term>Moment expansion</term>
<term>Nonlinear</term>
<term>Nonlinear optics</term>
<term>Nonlocal</term>
<term>Nonretarded</term>
<term>Observation point</term>
<term>Obtains</term>
<term>Optical generation</term>
<term>Optical microscope</term>
<term>Optical phase conjugation</term>
<term>Optical polarizability</term>
<term>Optical response</term>
<term>Optics</term>
<term>Packet</term>
<term>Paramagnetic response</term>
<term>Particle</term>
<term>Particle density</term>
<term>Pauli</term>
<term>Pauli hamiltonian</term>
<term>Peak height</term>
<term>Ph_vsics</term>
<term>Phase conjugation</term>
<term>Phase conjugation process</term>
<term>Phase conjugator</term>
<term>Photon</term>
<term>Photon drag</term>
<term>Photon energy</term>
<term>Phys</term>
<term>Physics reports</term>
<term>Plasmon</term>
<term>Point dipoles</term>
<term>Polariton</term>
<term>Polarizability</term>
<term>Poynting vector</term>
<term>Present author</term>
<term>Present case</term>
<term>Present context</term>
<term>Present section</term>
<term>Proc</term>
<term>Propagating</term>
<term>Propagator</term>
<term>Qualitative manner</term>
<term>Quantum</term>
<term>Quantum dots</term>
<term>Quantum optics</term>
<term>Quantum particle</term>
<term>Quantum wells</term>
<term>Quartz</term>
<term>Radiation reaction</term>
<term>Radiative</term>
<term>Rayleigh</term>
<term>Rayleigh expression</term>
<term>Recent years</term>
<term>Reference atom</term>
<term>Resonance</term>
<term>Resonance condition</term>
<term>Resonance peak</term>
<term>Response function</term>
<term>Response tensor</term>
<term>Retardation effects</term>
<term>Rigorous manner</term>
<term>Schematic diagrams</term>
<term>Schematic illustration</term>
<term>Schrodinger</term>
<term>Schrodinger equation</term>
<term>Second term</term>
<term>Semiclassical</term>
<term>Semiconducting</term>
<term>Semiconductor</term>
<term>Sheet conductivity</term>
<term>Sheet conductivity tensor</term>
<term>Slave approximation</term>
<term>Slave model</term>
<term>Small particles</term>
<term>Smolyaninov</term>
<term>Solid lines</term>
<term>Source field</term>
<term>Spatial resolution</term>
<term>Spontaneous emission</term>
<term>Straightforward matter</term>
<term>Subsequent subsection</term>
<term>Surface dressing</term>
<term>Tensor</term>
<term>Tensorial</term>
<term>Transverse</term>
<term>Transverse domain</term>
<term>Transverse field</term>
<term>Transverse part</term>
<term>Unit tensor</term>
<term>Vacuum domain</term>
<term>Vacuum propagator</term>
<term>Wave function</term>
<term>Wave functions</term>
<term>Wave packet</term>
<term>Xiao</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: To understand the electrodynamics of mesoscopic media it is in general necessary to take into account local-field effects. This article presents a review of the role played by local fields in the high-frequency electrodynamics of systems exhibiting essential quantum confinement of the electron motion. In Part A, the fundamental local-field theory is described. By combining an electromagnetic propagator formalism with a microscopic linear and nonlocal response theory the basic loop equation for the local field is established and some of its implications studied. Various kinds of local-field calculations are presented and the underlying physical interpretations discussed. In Part B, the basic theory is used to study the linear local-field electrodynamics of a few, but representative and varied, mesoscopic systems. Special emphasis is devoted to investigations of the local-field phenomena in quantum wells and small particles (quantum dots), and to studies of optical near-field electrodynamics and surface dressing of charged wave packets in motion. In Part C, important features of the nonlinear local-field electrodynamics of mesoscopic media are described on the basis of selected examples. Thus, a description of optical second-harmonic generation in quantum wells is followed by a discussion of the photon-drag effect in one- and two-level quantum wells, and in mesoscopic metallic and semiconducting rings. Finally, a local-field study of the optical phase conjugation of the field radiated by a mesoscopic particle is undertaken, and a new route leading to confinement of electromagnetic fields into the so-called quantum dots of light is presented.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Danemark</li>
</country>
<region>
<li>Jutland du Nord</li>
</region>
<settlement>
<li>Aalborg</li>
</settlement>
<orgName>
<li>Université d'Aalborg</li>
</orgName>
</list>
<tree>
<country name="Danemark">
<region name="Jutland du Nord">
<name sortKey="Keller, Ole" sort="Keller, Ole" uniqKey="Keller O" first="Ole" last="Keller">Ole Keller</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C18 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C18 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:F9E7E71FD0D202C449936407A16EF5B38F8817D0
   |texte=   Local fields in the electrodynamics of mesoscopic media
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021